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Extensional Vibrations of Elastic Platesl

2

by R. D. Mindlin® and M. A. Medick’

A system of approximate, two-dimensional egquations of extensional
motion of isotropic, elastic plates is derived. The equations take into v
account the coupling between extensional, symmetric thickness-stretch and
symmetric thickness-shear modes and also include two face-shear modes.

The spectrum of frequencies for real, imaginary and complex wave-nunbers
in an infinite plate is explored in detail and compared with the corre-

sponding solution of the three-dimensional equations. \
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Introduction

In a previous paper [l]l’ a derivation was given of approximate
equations of motion that take into account the coupling between face and
thickness modes of extensional vibration of elastic plates. The thick-
ness motion considered was that of t.s lowest thickness-stretch mode, in
vhich the displacement is normal to Tae middle plane of the plate and
the middle plane is the nodal vlane. The frequency of this mode derends
on Poisson's ratio (v ): the frequency increasing with increasing V.
when > 1/3 the frequency of the lowest thickness-stretch mode is
higher than the frequency, .r~dependent of v/ , of the lowest, symnetric
thickness-shear mode. In the latter the displacement is also unidirec-
tional but it is parallel to the middle plane of the plate and there are
two nodal planes symmetrically disposed with respect to the middle plane.
In the range of Poisson's ratios commonly encountered, both thickness
modes can couple with the face modes and with each other. This circum-
stance has a marked influence on phase and group velocities of weves and
on the frequencies and shapes of high-frequency vibrational modes. In
the present paper a derivation is given of approximate equations of
motion vhich include the effects of both thickness-modes.

The approximate, twvo-dimensional equations are deduced from the
three-dimensional equations of elasticity by - procedure based on the
geries expansion m-thode of Poisson (2] and Cauchy (3] and the integral

method of Kirchhoff [4]. A detailed exposition of the procedure, using

4 Numbers in brackets refer to the 1ist of references at the end of the
paper.




a power series, and its application to approximations of orders zero and

one ere given elsewhere [5]. In eporoximations of the second and higher

orders, awkward mathematical forms are encountered due to the lack of
orthogonality of the terms of & power series. At the suggestion of .
Prager, an expansion in a series of Legendre polynomials was studied. 1In
that case, although similar awkward forms appear as a result of the more
complicated formula for the derivative, they do not occur, for the most “
part, until the temms of the third order are reached. Hence, the e:cpa;n-
sion in a series of Legendre polynomials is a convenient one on which to
base the present second order approximation. The method of derivation
and the resulting equations (with the inertia terms omitted) are closely
related to E. Reissner's theory [6] of three-dimensional comctiox;s for
the equations of generalized plane stress.

The expansion in a series of lLegendre polynomials of the thickness-
coordinate, followed by an integration across the thickness, converts the
three-dimensional equations of elasticity into an infinite series of two-
dimensional equations which then are truncated to produce the approximate
equations. The full series expressions of displacement, strain, stress,
energies and equations of motion, in conjuction with an understanding of
Rayleigh's [7] exact solution of the problem of vibrations of an infinite
plate, are of aid in deciding what to include in various orders of ap-
proximetion and in understanding the implications of what is discarded
and what retained. The series expressions and Rayleigh's exact solution
also supply both the motivation and the necessary data for making adjust-

ments, of terms that are left after the truncation, in addition to an
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ad justment of the type made by Poisson in establishing the zero-order

equations. Tae ad justment analogous to Poisson's serves to uncouple the

nodes retained from the higher ones without seriously affecting the be-

havior of the lower onesS. e additional ad justments are made to improve

the match between the frequency spectra of an infinite plate as obtained

from the approximate and exact equations. This is accorplished by the

jntroduction of coefficients analogous to the shear coefficient in the
Timoshenko beam equations [8] and the analogous equations for plates [9].
In the latter paper [9] it was showm how the shear coefficient may be
chosen to effect a perfect metch in one or another part of the spectrum
depending upon +he frequency range and mode of greatest interest in a

particular application of the approximate equations. In the present case

four such coefficients are jntroduced and, due to the complexity of the
spectrum, several possible combinations of metching points present them-
selves. The choice is made here to do all the matching at zero wave nuu-
ver. The range of wave numbers and frequencies over which the match
remains good is a measure of both the usefulness of the approximate equa-
| tions and their range of applicability. In this range, solutions of the
approximate equations, in the case of finite plates, may be expected to
be relisble inasmuch as these solutions are composed essentially of com-
binations of the modes and overtones of the infinite plate.

when both the symmetric thickness-shear and thickness-stretch
deformations are taken into account, important properties of the fre-
quency spectrum contained in the exact theory ai< reproduced in the re-

sulting approximate equations of the second order, whereas they do not

S e



appear in the previous approximation of the first order [1]. These prop-

erties of the exact frequency spectrum include the imaginary loop dis-
covered by Aggarwal and Shaw [10]; the anomalous behavior of the second
and third branches with variation of Poisson's ratio [5]; the frequency
minimum of the second branch [5] with its associated zero group~velocity
at a non-zero wave-number ond phase and group velocities of opposite sign
at smaller wave-numbers, as described by Tolstoy end Usdin [11]; and,

finally, a pair of complex branches which account for edge vibrations

observed in experiments.

Expansion in Infinite Series

We refer the plate to rectangular coordinates x; (. =1,2,3)

with x, and x, in the middle plane and the faces at X, =+ b. The
components of displacement u; (j:1,2,3) are expressed as
- tn)
u; = g Py () ;'™ (x,,%4,1) (1)

vhere v = x,/b , the P,(n) are the Legendre polynomials

Piqd=t, Rp=yn, Rin=(3x*-1)/z,..

\ d"("\'-n“
see Pn(,l)': znn‘ d’]"

and the u;", it 1s to be noted, are functions of the coordinstes «,,

X, and the time, t , only. The u;w are the amplitudz2s of polynonmial

distributions of displacements across the thickness of the plate. For




convenience, however, they will be referred t. as displacements of order

n or, simply, as displacements.

Stress-Bquations of Motion. The series expression for the dis-

placement is substituted in the equation

which is obtained from the variational equation of motion (Reference [12],
p. 167). 1In Equation (2) the integration is over the volume, V , of the
plate; the T; j ere the components of stress; and the sumuation conven-
tion for repeated indices is employed, as are the comme notation for dif=-
ferentiation with respect to the coordinates x; and the dot notation
for differentiation with respect to time.

When the integration with respect to n , from -l tos+| , is per-

formed in Equation (2), the result is
]

tn-m)

¥
!A Zo (T, - El,z...o"‘"t?i

v - pbC, ;") 6u " dA =0, (3)
wvhere A is the area of the plate and

7" [Pantydy , F=[ROTIL,,
(&)

Dy = 2(n-m) ¢l < =2/(2n+1).



The fij"" and Fj"" are defined as the nth-order components of

stress and face-traction, respectively; while the constants D, and

C,  arise from the operations

n ! 0
g—&:Z D P [' Pmpnd,?:[,m#n)

mn i n.m
dy A Cp, m=n.

(5)

The appearance of FJ."“ and szm'"" , in Eguation (3), follows from
an integration, by perts, of the tems in Fguation (2) that contain 0/2%a.
Since Equation (3) must hold for all A and arbitrary 6uj'"’,

the quantity in parentheses must vanish and we arrive at the stress-

equations of motion of order n:

bT ™ = K DTy + £ = 0 G (6)
In the analogous equations of motion obtained from an expansion in
pover series (Reference [5], page 3.04) , an infinite series appears on
the right hand side and no series appears on the left hand side. However,
the series in Fguation (6) contributes more than one temm only for > 2.
Strein. In the three-dimensional theory, the components of strain,

"lj , are expressed in tems of the components of displacement by

26‘.’ = u-"] + Uj," . (7)

Inserting the series expa.rision from Equation (1) and using the formula

for the derivative from Byuation (5), we find




a0 )P + (8, 8, u;")0' D Fpml,  (8)

where ‘Szj is the Kronecker symbol dij with =2,
In order to define components of strain of order n , the summand

in Bquation (8) must be expressed as the product of P, and a function

independent of X, . Considering the double sum as a triangular array
2

and interchanging the order of swmation of columns and rows, we find

[
- n)
vhere the e;,."" , defined as the components of strain of order n , are
given by

[ ]
2 ‘ij(n) = u;’jm . uj"‘(n) + b"(2n *l)";l\,l...“fj u:mon)+ 82‘;“](""‘))- (10)

In the analogous expression obtained by & power series expansion (Reference

(5], p. 3.08), there is no sum over m . However, the additional tems In

Bquation (.C) do not appear until m = 3.

Stress-Strain Relations. The relations between the Ti.jm and the

eij"“ may be obtained by inserting the three-dimensionel expressions

[
[ ]

- (n)
Ui ¢ Cijut €ap = Cijun & ot (11)

) nel
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in the first of Byuations (4). After perfoming the integration, we find

T™=¢

w)
i n Ciyme . (12)

For later use, it is convenient to have Equation (12) expressed in
the reduced indicial notation, in which double indices ranging from 1 to

% are replaced by .ingle indices, ranging from 1 to 6, as follows:

v
=0, =Ty, € =€, €, = 2Cé6,,
=%, =%, €= €, €= 2 €,
Tl To=Tys €47 €3y, é‘=26|,, .

Then Bquation (12) becomes

mn ,

o
Ty =Cncpq€q™ } Prq =1,2,.-.6, Cpq=Cqp. (13)

Energy Densities. Using the strain-energy-density, U , given

in the three~dimensional theory by

2U = Cijnt €5 €4q = Cpq €p €q, (1%)
we define a plate~strain-energy-density
-— i
-

and find, with the aid of Equations (14), (9) and the second of (5),
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207 = ¢pq ;0 Crégeq™ . (16)

We also note that
ZU = go fpm é',u‘), (17)
(N dU/2¢, ™. (18)

Similaerly, using the kinetic energy-density, K , as given in the

three-dimensional theory by
2K = puju; , (19)

we define a kinetic energy-density of the plate by

2K =2[ Kdy = oL . uMu. (20)

Extensional Vibrations of Isotropic Plates

Wnen the plate is isotropic, motions syrmetric (extensional) and
entisyrmetric (flexural), with respect to the middie plene, mey be con-

sidered separately. In the case of the fommer, only those components of

displacement u;"  are retained for which j*n is odd. As a re-
sult, only those components of stress T‘JW and strain €; )
appeer for which ( +j +n is even. In the single index notation,

T'm ; (pm) , the tems which epoear are p+n odd for p odd and



even for p even.

PN

° The stress-equations of motion (6) then are

(2)




The components

€ (®)

e o

(§})

eSS e ———————
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of strain that remain, in Equations (10), are

= du, "/ dx,

= (U u,™s-0)/b
= duU,V/dxy

= dul/ox, + dul/ox,

= du,"foxy + 3(uy™ ¢ u:’-r .)/b

= du, fx, +3'(u.‘“+u.‘“+...)/b

du .“Vax \

s(u:l) + uz(‘)*...)/b

du M ox,

du, Y/ dx, + du A/ 2,

buzta)/DX3 + 7(“3(‘) * U‘“) + "')/b

duox, + 7(u! +ul¥e)/b

- e

(22)

T - AR———
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The stress-strain relations (13) reduce to

(= 2[(Ae2u) € + A€, +¢,")]
T, = 2[(A+2:) 6" + A6+ )]
T, = 2[(A+2u) €, + A€+ €]
00 e 2ue,”

£, = 2ue"/3
T = 2ue/3
(0 s e[z s Al s
LY = 2[(Avzu 6 v A6, €2))/6

2[(Av2u)e® + Ale + 6, /s

el
[ S
\

i‘ru) - 2/“ 6,‘"/5
C 3) % 2/« 6‘(”/7

4

T =2/

vhere A a.nd/u are Lemé's constants.

(25)



The strain-energy-density, in the form given In Iguation (X7,

becomes

2 U 5 t'mé.“. . awé;“) pe t‘m 6“.’

“ (9 oy m, W
t e+ T e, T e

(24)

* o 0 0
and, finally, the kinetic energy-density (20) is

R F P ( u.mu‘w . a‘w a‘m . t alm dzm

(25)

) ..
a +Ltu,a, +...).

Ny L 4 (9
#Suu ' ’3’“3 u; 7

Truncation of Series

We begin by setting

u.lmao, u;mao’ n>2,
(26)

n)

U, =0, n>3.

This leaves only the compoments U, W, u,”, u'™ u,*®

and u,”™ , as illustrated in Fig. 1. The tems 4" and u,*

are the amplitudes of uniform distributions that represent the thickness



(2)

JusuwadeTdstp Jo sjusuoduon

(€)

- e -

T *31d

L 0 0
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distributions of displucements which occur in low frequency extensional

and snear motions in the plane of the plate; u,”  is the amplitude of

a linear distribution of displacement which is an approximation to the

exact sinusoidal distribution in the lowest, symmetric, thicxkness-stretch

mode ; u,“’ and u,“) are the amplitudes of quadratic distributions

of displacements which are approximations to the sinusoidal distributions

in the lowest, symmetric, thickness-shear mode and the face-shear mode of

the same ortder.

The last "displacement" retained ( ut“) ) is the amplitude of a
cubic distribution which is an approximation to the sinuscidal distribu-
tion of displacement in the second, symmetric, thickness-stretch mode.

This is a mode of higher order than is to be included in the approximate

equations of the second order wnich we seek. However, uzu) produces

the second order strain €," (see tne eighth of Equations (22)) which,

in turn, appears in the second order stress-strain relations (see the
seventh, eighth and ninth of Equations (23)). 1In order to permit the

alternating expansion and contraction, through the thickness, which

should accompany the stresses T and T;” (by coupling through

poisson's ratio) and at the same time avoid coupling with the undesired

e (3)

higher mode, the thickness siress T,") and the velocity u, are

set equel to zero. The eizhth of Equations (25) is then used to express

€," in tems of €' and €°

€, = A&7+ €V)/(A2u) - (27)
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and this result is substituted in the expressions for T]"’ and T;”

to obtain
r‘-‘m = ZEI (elm‘ l/é, “’)/5’
(23)
r[a(l) = ZEl(e;l) - z/él‘“)/F.
vhere p = /\/z()w/u) is Poisson's ratio and
E'= 4ulArm)/(Ae2u) = E/(1-v), (29)

in which £ 1is Young's modulus. In addition, the contributions of the
stresses T;“) and t;"’ to tiie strain energy (see Fquation (24))
are neglected in order to destroy coupling with the unwanted higher mode
wnen the displacements vary with X and Xy .

At this stage, the stress-equations of motion end with the fifth
of Bquations (21); the strain-displacement relations end with er“’ in
Equations (22); the stress-strain relations end with 'tr“’ in Equations
(23), with the expressions for ‘ff", Tz“’ and t;“’ replaced by Fqua-
tions (27) and (23); the strain-energy-density ends wita the third line in
Equation (24); and the kinetic energy-density ends with the fifth term in
Equation (25).

Up to this point, the process of truncating the series expressions
end adjusting the remaining tems is similar to the one employed by
Poisson [2] to obtain the zero-~order equations of extensional motions

of isotropic plates (Refewvence [12], p. 497); the main d:ifference being

that here the process is carried on at a level two orders higher. In
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(L] (]

Poisson's equations only the zero-order displacements, u, and u,
survive. These are the amplitudes of uniform distributions, across the
thickness of the plate, which are good approximations to the nearly uni-
form distributions found in the lowest extensional mode of the exact
theory (at long wave-lengths) and are exact for the lowest face-shear
mode at all wave-lengths. The additional terms wu,”, u"™ and u,*,
which are now included, are the amplitudes of first and second degree
polynomials and these are not good approximations to the distributions
in the thickness-stretch and thickness-shear modes of the exact theory.
For exsmple, at infinite wave-length along the plate, the exact distribu~-
tions are sinusoidal across the thickmess. It is advisable, therefore,
to introduce additional adjustments to compensate, as well as possible,
for the omission of the polynomials of higher degrees.

The incorrect distributions of dispiacements affect the frequencies

meinly through the thickness-strains and velocities. Accordingly, we maxe

the substitutions

o ) o (1)

(o)
K, 6, for €&, , K, 0" for U,
o (0] o 2 N v (1)
v w o @,
ke tor ¢, W Uy" for U,

in the strain-energy and kinetic energy densities, so that the coeffi-

cients (r=|,2)3,4d will be available for appropriate adjust-

ments of the equations.

)

Finally, as a matter of expediency, we omit the term (4:' from
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(o)

g . This tem complicates th> equations and may be shown

the strain ¢

to have little influence on the long wave-length end of the spectrum.

Second Order Approximation

As a result of the truncations and adjustments described in the
preceding section, the variables and equations of the second order approxi-
maticn are

Kinetic Energy-Density:

Strain-Energy-Density:

l—](!) o~ (A‘*z/«)(f'”é.“)f "ntéaweam % 6;“6’“’)

«

+ 2)\(&,6;"(-;“ & é;me'm . K, 6,“6‘”) . E,”é,b’

(e e "e )3

4 s

CE (€M 6,6 s 2ve Y5 e e /S (51)
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)
Stress-Strain Relations ( T," = 3T “/d¢,*™

,L..m s 2 [ ()\"Z/u) ‘_.m & I\(Ka, é‘m 953“)]

€, 2[R (Ar2) €, + Ak, (€4 ¢ )]
;t‘(ﬂ = 2[‘ ()\*2/456;“ P A(é.‘“" Ko.é'“,)]
CS(O\ s 2/4 G‘(o\

0 = 2unte/3
f“" = 2 u iyt é‘m/3
f,‘n =2E'(e.“'¢u€,“')/5
f'm = 25'(6,"‘*1!6,‘")/5'

T‘m _._2/“63(1)/5

(The components of stress are illustrated in Fig. 2)

Strain-Displacement Relations:

€ te)

e (®)

(e components of

= au|"’/bx.
uz‘.,/b
duy™/dx,

bu’(d/bx' % bu,“'/bx,

3ub +ou/ox,

Du:ﬂ/bx. P 3u'(l)/b
= du ',
= au;lyb)(-,

= du,Yox, + u M/ dx,

strain are illustrated in Fig. 3).

(32)

e



e

()

Fig. 2 - Components of siress




= - c— i —

—— . — ——

—

——r”

(2)

Components of strain



20

Stress-Equations of Motion:

at—(“

()

————

()] T (W
Jlusiind S -+ _é—& -+ —FL [ ZP -—b—(AJ;—-
ox, DK,y b ot
at‘.) at.'") Fl‘.’ - Z DIU:M
+ * =Lp =
dX, o %y o ot
(U 0] (] “ 2 2, (y
AP TS TR - W 7L T W (34)
bx. bx‘s b b' 3 ot
at‘cuf bT;w_ 3{.m+ Lw i ZpK-:' a‘u‘m
DX,  ¥X, b b 5 2t
bt;m . be(:l _ af‘mT —F‘(-n ) ZP&I bxu,u)
ox, %, b b 5 at?

Displacement-Equations of Motion (obtained by substiwuting (35) in (32)
and the result in (34)):

—————

0] ™) 1,0
U™y (A e, Ak, dUg £® ., 24
M o+ (Aeu) . 1 T3 + Y P YD
) ) 2 Ut
Vzu (o)+ beo A& bu; _Ea_ = -3
M sy +(Aeum) oxs * b o, v ™ P ey
PR 3AK, 8o _ 3K, (/\;12,44)04.
Jun,tC 3afR" v 2w
» 202 A, ™ = Pk, “: (35)

ET oy ™ . 2
> l(l VIVU, T« (1ey) bx,]

t 1
- 5/“ ":(b U,:”_‘_ 3u-w) + _{_Fﬁ) = (ON‘I—?—LL(:
EY? b 2b bt*

.38 [(4-1))7 ugty (0 w)i&]
2 )

Xy
S 6,0 bu“" 3um SFm i blu ($])
- FUNLL W 3 = 9“4‘4
b x4 b 2o

2t
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where
Vl az . D" & bu.m du (o) o au.m R BUJW
= TS - ) = 3] = =
1 4 bx'l bx;l ¢ bxl DX: % bxl 3X3

s 4

The Coefficients ¥;

The coefficients Kk; are determined from a comparison of prop-

erties of the solutions of Equa%}ous (35), for the case of straight-

crested waves in an infinite plate, with the corresponding properties

of the analogous solution of the three-dimensional equations. Taking

the wave-normal in the direction of x, , we find that Equations (35)

separa*e into & group of three coupled equations on W, utu) and

4™ and two independent equations: one on u,‘” and one on Uy,

The coupled equations gevern three "compressional modes" and the re-

maining two equations govern ‘face-shear" modes. To consider, first,

the group of three, we set F, ™ =0 and

u,"’ = A sin §A, eiut : usm= 0)
u," =B cos x, e, (36)

. cwt
M‘(1) =C sm§x, euo , u3n3= 0

in Bquations (35) and obtain the secular equation

a“ q, 0
ay, % a,| =0 (37)
0 a4 Ay




where oK -
Ay, = %' 2Y2 ¢ antky/mt - Ky QY3
Gy, = E'2YSu + 12wt /m* -k 0YS
O, = 2k, (K'-2)z/T
0,42 -2k, Z/T
and

z=24b/T 5 N=w/wy , wg= ﬂ'(,«/‘ﬂ)'n 2b,

(38)

K= (Ae2u) fu = 201-9)/(1-29) .

We also obtain the three sets of amplitude ratios
A; B(:C; = I:a"/l" . ai/b,:) L'=I,2,3 (59)

where

a;,=mw(n*-k*zl) [z, (k*-2)

oz (ﬂ’l" i ) _ zarki-0zgd
2w\ 15k} Fxlk?

and the 2z, are the roots of Equation (37).
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It may be seen that z , which is proportional to the wave-number
¢ , is the ratio of the thickness of the plate to the real half-wave-
length along Lhe plate; X 1is the ratio of the velocity of dilatational
waves to the velocity of equivoluminal waves in an infinite medium; and
£l 1is the ratio of the frequency to the frequency of the lowest anti-
symmetric thickness-shear mode.

Te relation between {1 and z , in Bquation (37), should match,
as closely as possible, the corresponding relation obtained from the three-
dimensional equations. The match is improved, within the framework of the
present approximation, by choosing appropriate values for the coefficients
K; ; but, since the w; are constants, a perfect match can be made only
at one value of z for each of them. Now, large enough z corresponds
to frequencies high enough to enter the range of modes that have not been
included in the approximate equations. In a plate vibrating at such high
frequencies under practical (i.e., not mixed) edge conditions, the high
modes would, in general, couple with the ones of lower order. Thus the
applicability of the approximate equations to bounded plates is limited
to frequencies below the lowest frequency of the lowest neglected mode.
There is, then, little advantage to be gained in matching the approximate
and exact solutions at short wave-lengths (large z ) at the expense of
a good match at long wave-lengths; In fact, we go to the extreme and do
all of the matching in the neighborhood of z=0 primarily because
of the intricate behavior of the exact solution at long wave-lengths and
also because this choice results in a reasonably good match out to as

short wave-lengths as the frequency limitation permits.

e — - oe — o o o
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when z=0 , Bguation (57) has the three roots

N°= 0, 120K/miE, 60K} /TR, (40)

corresponding to the amplitude ratios
A:B:C=1:0:0, 0:1:0, 0:0:1l

respectively. It may be seen that, at infinite wave-length, the three
"compressional modes' uncouple to form an extensional, a thickness-stretch

and a thickness-shear mode. The three limiting frequencies are to be

compared with the exact values
N*=0,k*4 (41)

of the cut-off frequencies of the extensional, first thickness stretch

and first symmetric thickness shear modes in Rayleigh's exact solution

(7]. Hence, we set
WA 72 T R 7' (42)

and these relations between pairs of K; are used in what follows.
We proceed to examine the roots of Bquation (37) in the neighbor-

Locd of the roots given in Bquations (40) or (41) (which are now the

same ).

First, for z« |, {1« , ve find

0" = 422 (K-1)/K*, (43)
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1
i.e., phase velocity [ E/p(u-x)’)]'z . This is exactly the result obtained
fron the three-dimensional theory for the lowest mode at long wave-lengths.

Next, for z«&l, {l=k+€, € —{ , Equation (57) gives

dn _ _z (mtked (k‘-z)‘(k‘—ﬂ) Mia
dz k‘-‘i(IZm,1 ! k® (4ha)

and in the limit, as k=2 and z—J0,

dfl Mhy (458)

Finally, for 2z «i, N=2+¢, ¢ >0 , we find

? 1 2
dQ T’z (4(k -)(k2-4) Ky (46a)
dz 64\ Tk} K"

apd in the limit, as k=2 and z =0,

df TR
—_— T ¥ . 1"
i -7 ———-—3—4’“.},5. (47a)

Fquations (44a) to (47a) are to be compared with the exact values

(Reference [5], p. 2.43) given in the following correspondingly numbered

equations:

dl _ #hz (7 4 cotTE) (4kb)

dz T K>



an _ , 2 (450)
az T

90 _z(m_ 4 E) 4éb
dz w(z Ry R (k6b)
an _ - 2 (47p)
dz 7w

Equating (44a) to (44b) and (46a) to (46b), we find

3

L7 M[ﬂ(k‘—l)+4kcot£—“-] :
2

K, T k*
(48)
-'—- = — ‘5."1 “"l [KA‘ M(E_itanz)] .
K 4rt-O(k-4)Lk w32 kK
e also note, from BEquations (L43), that
lim 4 - 192,
k-2 K',l |
(49)
lim L = 3840(r’-6)
ks2 K e

Equations (42) and (48) give the values of the four coefficients

LA in terms of Poissnn's ratio. As a result of these relations, all

of the ordinates, slopes and curvatures of the curves {l vs.z,
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characterizing the frequency spectrun of the compressional modes of the
approximate theory, are identical with those of the exact solution at

z=0 . Bquations (48) and, in fact, all of the equations of this
second-order approximation should be used only for Poisson's fatios less

than about 7/16. Above that value the frequency of the thickness-stretch
mode is so high in the spectrum that, in the exact theory, coupling with

the second symmetric thickness-shear mode becomes important and that mode

i5 not included in the present approximation.

; ")
Turning, now, to the two face-shear modes, we set FJ- = 0,
o _ W _ ta) _
u®=u =y =10,
L wt
us“’=A'cos§x,e‘“’ , (50)

U, = A, coséx, e’

in Bquations (35), and find that u,” and u,'” are nol coupled and

have frequencies given by
N =2z, 4+2'/n} (51)
respectively. These are to be compared with the frequencies
Q=2 a4+2? (52)

of the face-shear modes of orders zero and two obtained from the exact

equations. It may be seen that the zero-order face-shear mode is re-

produced exactly, in the approximate equations, for all wave-lengths.
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The sccond order face-shear mode has the correct ordinate (1) and
siope (dQ/dz ) at z=0 but it does not have the correct curvature
because of the presence of the coefficient K, . By choosing K, =1/,

this discrepancy could be eliminated, byt only at the expense of incor-

rect behavior of one of the coupled modes.

Frequency Spectrum

The spectrum of frequencies of the five possible modes of vibra-
~ion of an infinite plate, which the approximate theory contains, is
given by the five independent roots of Equations (37) and (51). We con-

sider, first, the three compressional modes.

Bauations (37) relate 2° end 2z but only real, positive

values of () have physical significance. For real, positive {1 , tne
roots z? may be three real positive or two real positive and one real

negative or one real positive and two conjugate complex. lence the roots

Z=x+iy (53)

may be three real or two real and one imaginary or one real and two con-
jugate complex. In addition, the character of the specirum is different
according as Poisson's ratio is less than, equal to or greater than 1/5.
Je consider the case v <|\/3 (i.e., k <2 ) first. Then,
vhen f1>2, the three roots of Hquation (37) are real ( y=0 ).
They are illustrated in Fig. ke (for Vei/4 , i.e., k* =3 ) by the
three curves (full lines) marxed @,, ¢, ¢, in the plane (=0
and the region f1>2. As () drops below J1*Z , the largest
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root, ¢, , approaches zero wita asyuptotic behavior given by Equation

the intermediate root, ¢z , éapproaches a minimum, " , bvelow

(45);

which therc are no real roots other than ¢, ; the smallest root, ¢b,,

y=0 at =2, x=0

approaches a minimum in the real niane
with asymptotic benavior given by Equation (LGa) or (46b) which are the
same in view of Equations (!&). Continuing with the rcotv ¢, , as [1

drops below [f)=2 the rcot is imaginary ( x= (¢ again with asg-
s 2 (5] b4

yuptotic behavior given by Equaticn (4Ca) or (4Cb) in tnc neighborhood

of N:=2. As () approachcs K , from above, the root ¢y Tforus

e loop in the imaginary plane ( X=0 ) and approaches (l:h, y=0

with asymptotic behavior given by Equation (4ka) or (ibb). As {2 con-

tinues to drop below fl=k , the roct ¢, becomes real, with beaavior

in the neighborhood of ) sk, x= 0 again given by (-+ha) but now x
is negative. Upon further diminution of () , the root ¢3 approacanes
a minimum at f2=(* and regative x. 7This portion of ¢, (i.e,

between =k = and Q=" ) is identified in Fig. ba by [ ¢, ],
where the braciets indicate that it is the reflection in the plane x=(

that is shown. Finelly, when [ < Q* , the roots 4’2 and d)._, are con-

Jucate complex ( z = tx +CL1 ). Cne of them is shown, in Fig. ha, as the

curve marked ¢z ; this curve is also | ¢3 J, i.e., the reflection of the
conjugate root ¢3 in the vplane x= 0.

As Poisson's raiio agrroacines 1/ from below, the Ireguency of the
thiciness-stretca mode increases, apovroaching the frequency of the thick-

ness snear mode; i.e., at z=/¢ the intercept =k approaches

N1=2 . Conjointly, the curvature of ¢, at N =k, z=0
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approaches negative infinity in the plane 4 =0 and positive infinity
in the plane x={¢ while both slopes remain zero: all in accordance
with Equation (b4e) or (4bb). At the same time, the curvature of ¢,

at N=2, z=0 approaches positive infinity in the plane ¢ =0
x=0 while the slopes remain zero:

and negative infinity in the plane

all in accordance with Bquation (46a) or (46b). Meanwhile, the imaginary

loop shrinks toward the point =2, y= 0.
At V= 1/3, the thickness-stretch and thickness-shear modes have

the same frequency and the slopes of the two branches of ¢, become 2/x

in accordance with Equations (45a) and (47a). This situation is illus-

trated in Fig. 4b. Here, again, the portions marked [ ¢, ] are the re-

flections, in the plane «x =0 of the actual branches.

When ¥ >1/3 the thickness-stretch mode has a frequency higher

than that of the thickness-shear mode. The spectrum (illustrated in

Fig. 4c for V=Z/5’ ) has now undergone an important change in that

the imaginary brench loops up, from () =2, instead of down.

Since only powers of z? occur in Bquation (35), there is
anotter set of physically significant roots given by the reflections of

the curves of Fig. 4 in the planes x=0 and y= 0.
Turning, now, to the face-shear modes, the first root in Equation

(51) yields the straight line marked Ho in Fig. 4. The second face-

shear mode gives the rocts marked Hz in the figures; these roots are
real for {1>2 and imaginary for Q1< 2. As before, there is

an additional set of roots given by the reflections of the curves H,

and H, in the planes x=0 and y = 0.




The spectra of the corresponding five modes, as computed from
Rayleigh's solution of the exact equations, are also shown5 in Figs. ks,
b and ¢ (as dashed lines). The importance of the introduction of the
coefficients ki - and their definitions, in terms of Foisson's ratio, is
apparent. Without these coefficients, the extraordirarily complicated
behavior of the branches of the exact frequency spectrum at long wave-
lengths would not be reproduced in the approximate equations. In the
whole range of frequencies and wave numbers depicted, the approximate
spectrum is reasonably close to the exact one; the poorest representation
occuring in portions of the complex branches and the spectrum of the sec-
ond face-shear mode. On the whole, fair results may be expected from
soiutions of the approximate equations in the case of finite plates.

The shapes of modes in the various rangec of frequency can be
anticipated from the real, imaginary or complex character of the roots.
In rectangular coordinates, for example, real roots correspond to trigo-
nometric mode-shapes; imaginary roots to exponential or hyperbolic mode-
shapes; and complex roots correspond to modes whose shapes are given by
products of trigonometric and exponential or hyperbolic functioms. A
striking example of the latter is to be found in the experiments with
circular disks by Shaw [13].

The phase velocities (Vv ) and group velocities ( v4 ) can be

visualized readily from Figs. 4 inasmuch as

2 The complex roots were xindly supplied by Dr. Morio Omoe.
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(5,)

For exenple, the phenomenon of phase and group velocities of orposite
sign, noticed by Tolstoy and Usdin [11] in Rayleigh's solution, is repre-
sented by the bronch | qs ] in the real plane. Also, the minimum et

n* represents zero group velocity and non-zero phase velocity. As the
wave-length approaches zero ( x »00 ) the frequencies rise beyond the

range of applicability of the equations and the asymptotic vehavior of

the velocities of the three compressional modes are

- = «-M—'!‘ .."_4. ”M ._'. E . )4
veh Ky ¥V P , r ’ ko | p0-7) S

According to the exact theory, the first of these should be the velocity

of Rayleigh surface waves and the second and third should be the velocity

of equivoluminal waves.

Additional Results

a. The equations of corpatibility may be obtained by eliminating

the displacements from Equations (5»), with the result:
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d'e,” de” e,
dx," 2%, " 0K, 3x,
alealo) 3 € 1) - _'_ bé [{})
ox 2 b* b dx,
3 €7 -(l.) i ?}lé.m . _'_ i&w
b* d Xy b 24,
LAt 2, (0 A )
280, 267 ot (55)
0X, dx 2 dx, x4
f w ) ()
3 2% _ZL% . 'ab? 3¢ b;, )
b X3 xa ! b xg
(L} V] [} m
e (_3e; *ae‘+ae‘)
3x, dx, 2b b O Ky X,
(1) o) o
326 .12 (_. LTS -1 S 36;‘_”)
b 0X, 2 0\ 22X, 3X, o

e first of (55) is the usual compatibility equation of generalized plane
stress and the remaining six equations correspond to the orcdinary six

competibility equations; the main differences being that here the compo-

)
P

b. It may also be shown that there are nine dislocations when the

nents € have a factor 3 and the operator 9/dX, is replaced by I/b.
strains and their derivatives are contirc:ous. Three of them are the two
translational and one rotational dislocations of (eneralized plene stress.
Of the remaining six, three are translational (in the displacements

u;”, u,") and three are rotational, in the component of rotation

] (2 { \
(au,“* 3&.), (2 2w (2w 3w
2

56
o ™ 2%, dky ) 2\, b (56)

(1]
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c. A theorem of uniqueness of solutions of the epproximate

equations of motion may be established along the lines of Neumann's

theoren ([11], v. 176 and [8]). This leads to the following conditions
sufficient for a unique solution (in the absence of discontinuities and

sinjularities):

1. Initial values of ', u,, u,", u,"” and u,”

-

throughout the plate.

o AL VG LY

4, and U,

ii. TInitial values of U, , Uy , Uy , 4,

throughout the plate.

i1i. One member of each of the five products F “u, ', F“u!,

Fhu,” ) EMu®, F,"u,” at each point of the plate, i.g., five surface
conditions.
iv. At each point on the edge of the plate (normal n  tan-

[ [{] [}

0 o
Uy 3 tnl uz ’

gent s ) one member of each of the five products f,\,,m u, , T,

Q) w () . .
Up , Tae Us ,1i.e., five edge conditions.

8

The requirement that the strain-energy-density Uw, BEquation (31),
be positive definite is satisfied by the eddition of the requirements
k>0, K,>0 to the usual requirements 3A «2m 20, wu > 0.

d. In the case of steady vibrations, the displacements may be

expressed conveniently in terms of potentials that satisfy Poisson equa-

(wt

tions. Omitting a factor e the results are

B




u.“': _all',._tl-b *_Q_‘.!-i’i’
ox,  x, ex, dKy

U= 28 29, 26, oM,
dKy dX, Ox, X,

U =, p, o,y +wy ¢, (57)

Ua) = -a—t' + -% + ﬁl = a_H&
vE A 2x, Pe 2K, Ps BX, 2,

ua"):p'lil.‘*@’_a!_‘,’_p’_%fﬂ‘r}_“l
3

bx; Dy bx.

/JVZH°+(ow‘H°=0
S TH 4+ (kipw™ 156 k) H, = 0 (58)

V1¢£+§:¢‘ 20, i:l,Z,.3
where

«; = bl(Arzu b - pw?l/iA

o= b/ [ 200 - EEA

(59)
Juk,' ]
and the §l' are, again, the roots of Equation (37). It may be seen
that H, &and H, are the potentials of the two face-shear modes and
the ¢‘- are the potentials of the three compressional modes.
e. The tensor, and hence invariant, characters of the quantities

that appear in the second order equations are, for the most part, apparent.
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For example, ir tne displacement equations of motion (»5), if the first
and seccnd equations are regarded us the rectangular components of a
vector and the fourth and fifth equations the rectangular components of

another vector, the only differential operators that appear are the

gradient, divergence, laplacian and b‘/bt’ : all invariants. The
dependent variables are the scalar u,"' and the two vectors
[ L. (o) () (o} ()]
U™ = u "k, + U, kzt"‘&"}.«*u" )

r 2r (60)

o _ () () E [EV) Q)
U = u, ﬁ.*ua,‘\(ﬁ u, Ed+uy|,‘vy;

while the gradient operator is

o 2 Lok 2 2 5
vk o, L My S ds, L s, (61)
where K, , k, and  k,,k, ere unit vectors in the rectangular

directions 1, 5 and the orthogonal curvilinear directions o, r
respectively: all in the plane of the plate.
The appropriate strain tensors and their expression in terms of

» .
vector displacements are not quite as apperent. We define another vector

displacenent

@' = gk, (62)
and a gradient operuator o
V=7 vk, /b (63)
L ]
4
o
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where Kk, is a unit vector normal to the plane of the plate. Then the

two tenscrs

(o _

¢
'

5 ( )
64
¢ =3(Ty +u'y) e

cons:itute the strain. The seven equations of compatibility, for example,

become

0
Y"s’“g‘:oo (65)
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